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A method of formal justification of an extremal aiming scheme [4] for the problem of 
games encounter of motions [l - 41 is described. 

1. Let us consider the problem of encounter of pursuing (y[t]) and pursued (2 [tl) 
motions described by the differential equations 

rl.f//rlt = f(‘) [L/ ,u] 
(1-f) 

rl;/tlt := p 1 Z,I?] (1.2) 

Here !I, L are the u(‘) - and II(~) -dimensional vectors of the objects, respectively ; 
u., u are the I’(‘)- and r’(“)-dimensional vectors of the controlling forces ; /W are continu- 
ous and differentiable vector functions. The realizations u [t] and v[t) of the permissi- 

ble controls are restricted by the conditions 

(1.3) 

where u, v are closed bounded sets in r(I) - and r(2) -dimensional spaces, respectively. 

Encounter of the motions 1//L] and z[tl at the instant t = t, is defined by the equality 

W*lL = W,lLl (1 .(I) 

where {u),,~ and {:;(,,, are vectors consisting of the first ~2 (nt x< ncii) coordinates of 
the vectors J/ and z.. (The vectors considered below are assumed to be vector columns 

unless otherwise stipulated (e. g. unless trarisposition is mentioned). 
The problem consists in choosing a permissible control U, which ensures encounter of the 
motions ~[1] and -ii] whatever the piecewise-continuous realization u[t] satisfying 

condition (1.3) (we are referring to the chosen domain of possible initial conditions 
1/l/,,], zl/,f). In an earlier paper [4] we suggested that this problem be solved by a rule 
for constructing u, which we shall call “extremal aiming”. For linear systems this rule 
is discussed in [5]. It has been noted that its use and justification involves difficulties. 
One of these has to do with the fact that extremal aiming generally defines the control 

ILoll = ILO(/Jlll, ZIll) as a non-singlevalued and discontinuous function u(y, z) (e.g. 

see [6] ). 
The first of these two difficulties can be circumvented by limiting attention to those 

cases where the target point Q” [t] which determines the optimal control is unique. This 
leaves us with a fairly rich class of problems to be investigated. However, if we then 
exclude problems in which discontinuous functions 11~ can occur, the remaining class of 
problems is probably unjustifiably meager. It is therefore advisable ,to investigate extre- 
ma1 control under the condition of a unique target point volt) without any further nar- 
rowing of the class of problems. HoweverJn this case, it is necessary to work on Eq.( 1.1) 
which contains the discontinuous function u = u” (u, z). This approach obliges us to use 

generalized solutions [7] of such equations. 
The generalized solutions !/I tl , z[ll enable us to overcome the difficulties involved 

in the problem of existence of an extremal motion ~[l]. A simple example shows, how- 
ever, that in a sufficiently natural class of generalized solutions Y/(t) the extremal 
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control ~*(~~&~~.z[~]) does not ensure encounter of the motions y!t] and zft] in every 
case. 

In fact, let us consider system (7) of [S]. We regard as a solution Y [f] of the corre- 
sponding equation ClVl -_- +t, 

dl - I/a, x = - !/I -I- u” (!/, 2 [II) 

and absolutely continuous vector function Y it] which satisfies conditions 

WI +a ItI 
dt =YzIq - dt = - Yl ItI +*wl 

for almost all values t a to . Here u, - 11’ (Y It], z it]) at the points of c~~~~ of 
the function u” (y, a). and ug is any number from the interval - I” < u. <-P at the points 
Y = Y It] * 2 = z [t], where the function u0 (Y, t) is discontinuous. In the case p - v’= 
= i, v > 2 .system (7) of [S] interpreted in this way for v It] = 2 has the generalized 
solution Yl It] - 21 [t] = -2, Y, It] - 2s It1 = 0 (~0 = 0) which defines motions y [r] 
and z itI which do not converge with increasing time t . 

Thus. the extremal aiming rule in the class of generalized solutions z~[tf and zli] 

requires improvement, This improvement, which includes a braking constraint on the 
value of the instant of absorption [4 and 5f to= t f 0” It] and is based on a time- 

discrete computational scheme, is described in [S] for the case of linear monotype 

objects ; the same improvement is justified in [8] for the general case of linear systems. 
The purpose of the present paper is to present an analogous improvement for the extre- 
ma1 aiming rule.which also includes a new constraint for the quantity @It], but which 
will be treated within the framework of generalized solutions of the above differential 

equations with a disc~t~uo~ right side. We emphasize that this rn~i~cati~ of the 
problem is formal in character. With computer realization its expansion can take the 
form of the approximating scheme described in [S]. 

$4. Let us define the improved extremal control no. Its construction rests on an ancil- 
lary construction which is compared with the realized states rJt] and ~Itl at each in- 
stant t, 

We begin with some preliminary remarks. Let 2 be some temporarily fixed instant. 
As usual, we apply the term “attainability dornain~~~(~)l~, 61 (for the motion- g(t) 
from the state if [t] = 9 by the instant z = t i- 0) the set of those and only those 

points irl1 m in m-dimensional space to which the system dg/lds = f(t) [FJ, 26) can be 
brought in the time t!< rQ t _i- 6 from the given state y[t] -_r~ through the choice 

of the program control U(T) (1 < Z < t -+- 0) restricted by the condition ~(5) i=‘r: U. 
The attainability domain I/(@ Iz, ti] is similarly defined. 

If system (1.1) is defined by the linear equation 

dY / dt = A(‘+/ + B@) u (2.1) 

where restriction (1.3) is of the form 

itu wa Qk>O - const) (2.2) 

where the symbol 1 u 11 represents the Euclidean norm of the vector u,. then we know 
(e.g. see [5] ) that the domain 11 (‘I [Y, fi] consisrs of those and only those points 
4 = {& which satisfy the inequality 

0 

lb $ I{ {IL’ [S, r] nQ/ I I& -1.. (Y (0, OJ v:,,‘l - I’(/ ;.,! 0 (2.:;) 
1) 
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for any choice of the m(-dimensional vector C. Here the symbol Y Ir, T,,] denotes the 
fundamental matrix of solutions for the equation do I dr = A(‘)~J; the prime signifies 

transposition ; the symbol (Q),,J stands for a matrix consisting of the first II~ rows of the 
matrix Q. Because of the inhomogeneity of the left side of (2.3) in l, it is sufficient 

(and necessary) that condition (2.3) be fulfilled only for some suitable subset L of vec- 
tors Z, e.g. for all L with the norm jj 1 jJ Q 1 or - 11 III = 1 , etc. Similarly, in the case 
of the linear equation 

dz / dt = A@); + B@) 1) (2.4) 
under the restriction 

II ?J It1 II d v (v > 0 - const) (2.5) 

the domain I#*) [z, ti] , like (2.3). is described by the inequality 
8 

v 
s 

j/i% [6, z] B@)},‘1j\ dt. + {Z [6, O] Z}m’l - l’p > 0 (2.6) 

which must be fulfilled for every point p from IJ (a) 12, SI for all 1 (for all 1 fromL). 
We assume that the domains II(L) [y, O] are convex closed sets. Along with the attain- 

ability domains H(2) [z, Q] we shall consider certain associated bounded convex closed 
sets G(s) [z, Q] containing them, so that for all of the values of Z and 6 under consider- 
ation we have the inclusions Jo [z, +] ,= ~(2) [z, @] (2.7) 

Here we assume that the sets G(s) [z, 6] also satisfy the condition 

G(s) [&*I,9 - t*] c G(2) Mt,], 6- t*] np~ t* ‘r t, (2.8) 
whatever the motion z[ t] of system (1.2) generated by the permissible control dtl 
(t* < t < t*). This condition is fulfilled automatically if H(s) [z, 61 = G@h [z, 61. 

The sets G(I) = Ii(l) and I%) are the intersections of their basis half-spaces [9]. We 

shall therefore describe them by means of inequalities similar to conditions (2.3) and 

(2.6). Hence, let the domains G(l) [IJ, 6] and G(2) [z, 61 be described by the inequali- 

I f%/’ -0 * 

P=l@ “(‘I 

9 

ties (Fig. 1) 

p(‘)Iy, 6, II - Z’g > 0, p(Z) Iz, 0, Zl - Z’p > 0 

respectively, which must be fulfilled for CI E G(‘) and 
p E G(2) for all Z (11 1 11 =I). We shall assume that 

functions p(i) which are convex and homogeneous in 1 
are continuous and that they satisfy the Lipschits condi- 

I tions. 
The instant 2’ = t + O”(y[tl, AtI) > t, when 

.1 / f,?b=J 

* 

the condition 
G(2)IzItl, IW c 13') IyItl,W’) 

p’%‘p;o ,,,z, is fulfilled for the first time will be called the “instant 
of absorption” of process (1.2) by process (1.1) (for a 

,;‘“I given initial state r/l/I, n I/I). In order to construct the 
extremal control i&” we also need to consider the closed 

6 E -neighborhoods of the domains c(l) [y,?‘kj. We denote 

Fig. 1 
these e-neighborhoods by the symbol H(‘.) [y, 0; El. 

In the case of a linear system (2.4) under convex 
restriction (2.5) we can set Ct2) = 1Zt2). Further, in case of a linear system (2.1) under 
restriction (2.2) the domain C(l) [!I, 0; E] consis ts by definition of those and only those 

points p for each of which there exists a point 9 satisfying conditions (2.3) and the 
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inewaliCy II q - p II < E. This means that the domain G(“Iy, 6; el contains those and 

only those points p, for which the condition 
0 

mjtx yin 
(1 
p 

0 

lj {Y f*, r] B(‘)},‘lII 2% -t IY [6, 0] tlJn’l - I’ (p -; s)) >, 0 

for ir .P 114 e, II 1 II G 1 (2.0) 
is fulfilled (s = q - p) . 

The operations max and min can be interchanged [Q. But then (5?. 9) immediately 
implies that the domain Gfi) I%, 6; a] is described by the inequality 

a 

e + p S II {Y [S, z] B(Q),‘1 /I f-h + 0.16, 01 ?/lm’l - I’P 2 0 (2.10) 

which must be ful&ed for every point p E C (I) for all E with the norm 1; 111 = 1. 

Finally, the condition of absorption of the domain 6’“) Iz, 61 by the domain G@) [r/, 0; e] 
becomes a 

e + p c II w IS, rl ~%n’~ II dt - v 
.I f 

II {Z IS, r] d2)},‘1 11 dr + {Y 16, 01 y - 

0 0 

- 2 16, 01 z),‘l 2 0 (lllli=1) (2.11) 

since here condition(~,lO~ must follow from condition (‘2.6) (for the same value 

p E Gt2) fs @I). 
In the general case the domain G(0 [y, Q; C] is described by the inequality 

E + p(l) Iy, 6, 11 - I’ p a 0 01 1 II =i) (2.12) 

while the condition of absorption of the domain G(Z) b, $1 by the domain ($1) fy, 0; ~1 
becomes E + pft) f$, 6, I] - p(s) Iz, 6, 21 > 0 (11 l/i = 1) (2.13) 

Now let us turn from these ancillary remarks to the actual construction of the extre- 
ma1 control u’. To do this we consider the (n(l) $-&)+l)-dimensional phase space 

W whose elements are the triplets (y, z, 61, where 6 is a scalar variable, 6 > 0. 
We break down the whole space winto two parts, w, and wS. 

The set W,, consists of those and only those triplets (y, z, 0) for which 
6 > I?“(!/, z); the set IV on the other hand, consistsofall those triplets (u, z,I’)} for 

which 6 < I!“(?J, z), 
We shall construct the control {lb as a func- 

tion of the quantities I/, z, 8, so that the 
realized value of the control r?‘[l] is given 

by Eq. ~“[1] = ~“(~lll, ~[l], a/l]). Here 
the variation of the vector functions IJ [L] 

and z[t] is defined by Eqs. (1.1) and (1.2); 
the law of variation of the additional variable 
0 [t] will be given below. In the domain F%‘o 
the control u” is a non-singlevalued function 
which can assume any values satisfying the 
condition u” fzz u (2.14) 

The control uOin the domain WE is con- 
structed as follows. Let e”(y, z, 6) be the 

smallest value of e > 0 for which the domain GW [y, 0; E] contains the domain 
G(2) Iy, z]. (By the definition of the set WEwe have&‘@, z, tl)>O if (y,_z, 6) E WC.) 
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We say that the domain: G(l),absorbs the domain G(s) regularly if the boundaries of these 
domains have a single common point P”. We assume that this basic condition is fulfilled 
in all cases below. Such a situation will be called the “regular case”. 

Let Q” be the point of the domain G(L) [y, 01 which is closest to the point p’. We 

denote by the symbol u,(Y[tl, z[t], fi]t]) the control u,[t] which at the instant t 
aims the motion Y at the point 

{Y@ + 6)], =q” 

In other words u,[tl = u,(t),where z+_(r) (t < ‘c < t +.S) is the progam control 
which brings the system dy/dr = f(l) [ y , U] from the state y[t] to the state 

{Y(l + s>i, =q” (Fig. 2). 
The function U, (t) satisfies the conditions of the maximum principle PO]. We assume 

that the function u” (Y, z, 0) = U* [t] is generally non-singlevalued at the point Y, 
z, 6, where it can assume any values which satisfy the conditions of the maximum prin- 

ciple. 
Thus, the control u’(Y, z, 6) has been defined for all values {Y, 2, J?‘} from WV. We 

must now complement system (1, l), (1.2) with relations defining the variation of the 
quantity 0(t]. We assume that the function fl[t] (which can generally be discontinuous) 

is continuous in WC and that it satisfies Eq. 

d&/dt = - 1, {y, z,, 0) E WE (2.15) 

In the domain W,, this function satisfies the inequality 

(d0/dt)(“) < - 1, {Y, 2, s> E wo (2.16) 

Here the symbol (dfi/ldf.) (b) denoted the upper derivative. 
The term “generalized solution” 1/!11 , dil, 4111 (f,, < t < I’) of system (1.1),(1.2). 

(2.15),(2.16) for ?I - rr”(!/, Z, 0) will be applied to any vector function { Y[t] , z[t] , 
@[t]} (to < t -CL: lZ’j which satisfies the following conditions : 

1.) The vector function cl/] is continuous for all /CZ]L,,, 2’) satisfies ordinary 
differential equation (1.2). where u = U[ 11. ;Here the symbol dz/dt in (1.2) represents 
the right-hand derivative ; any realization of ~[i]. which is continuous on the right and 

is restricted by condition (1.3) is acceptable. 
2) The vector function Y/t] is absolutely continuous and for almost all tE]t,, T) 

satisfies Eq. (1.1). where u = u”(Y, z, 0) and z = z]l], 0 = Ol~l. 
3) The function 0[t] for all t E [to, T) is continuous on the right and satisfies 

conditions (2.15),(2.16). Here the condition &O(y[t], z[t], o[t]) = 0 must be fulfilled 

in the domain IV,. 
The vector functions { y[ t] , z[ t] , s[tl} which are generalized solutions of system (1.1). 

(1.2),(2.15), (2.16) will also be called the “motions” of this system generated by the 

controls u”(y, z, 0) and v]t]. 

3, Let us consider the properties of the extremal control u’(y , z, 0) defined in the 
preceding section. First, we note that the domain we is an open set. 

In fact, let the point iv*, z*, 6,) CZ IV’. Then E’ (y*, z*, 6) > 0 for all 0 < 6 < a* , 
and in accordance with (2.13) we have 

lnin (e’ (ye, it, 
llW1 

0) -j- p(‘) [&, 0, I] - [P) [z*, 0, .11) = 0 (0 < 4 < 0,) (3.1) 

’ are continuous. This implies that for a sufficiently small 6 > 0 we 

ha~~h~n~~~f~&) 
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PC’) IY, Q, II - p(2) 12, 6, Z] < -a (a > 0 - const) (3.2) 

for all 0 < 6 < 6, + 6 and I] I II = i,k provided that [I y - y,, I( < 6, II z - z* 11 < 6. 
But according to (2.13) this means that the inequality a9 (y, i, 6) >a, i.e. that 
6’ (y, Z) > 6, is valid for such y, L and 0 which means that some neighborhood of the 

point tu+, x.,6,} does, in fact, lie in the domain W”. 
Let us consider some point (y9$, z.+.b I’*} E W’. Let u* (.r) (t = 0 <r< 6,) be the 

program control which determines the function u.,(y,, z*, I?.+) which generates the 

extremal control u’(y,, z* , fk*) (see the beginning of Section 2). (The initial instant 

from which time is measured does not matter in the steadystate systems under consider- 

ation, so that we can set t = 0.) The control u* (r) brings the system 

li@z = ~“‘[I/, ul (3.3) 

to the point (~(0,)) = q” lying on the boundary of the attainability domain Gcrjiy,, $?,I. 
The function U*(Z) therefore satisfies the conditions of the maximum principle [lo]. 

11 (IP (t), y (+ .u, (z>) == max: ll,(Q (t), ti (t), u) (n<ru’s*) (ij.4) 

Moreover, the vector function UP %%sfies the boundary condition 

$j (6,) f_ l,“, 91 (0,) = U (/+=I,*.., al; i = ,)I -t I, . . ., d) (3.5) 

where I”. is precisely that m-vector I, for which, in accordance with (2.13) and (3.1). 

we have 
;?t[e” (?/*9 z*, 6,) + $1) iy*, 6*, Z] - $2) [z-*, 6*, Z]] == 

= e0(2/*, G+, 6,) $ p(l) [z/*, o,, P] -p(2) [z*, 6,, Z”] = 0 (X(9 

It is important to note that in the regular case (which we are considering here) the 
vector I” also varies continuously with changes in y, , Z* and 8, This is a consequence 
of the continuity of the functions p(i) and of the uniqueness of this vector (for given y:, , 
&fi.*), h’ h * t w lc m urn follows from the uniqueness of the point p’. Under sufficiently 
general assumptions (which always hold for linear system (2.1) the continuous variation 

of 6, and of the vector q (6,) as well as of the target point q*) results in continuous 

variation of the vector 11) (z) (O< T< 6,). W e assume that this condition is fulfilled. 

Hence, in the regular case the vector q(O) in maximum condition (3.4) varies continu- 

ously (in the domain 1.V) with continuous variation of y:, , zy:, 0, . Thus, the control 

u” (Y *, .z*, fb,) is determined by the maximum condition 

*‘(O)P)[y*, u”l = max(Q’(O)P) Iy,, ~1) (32) 
UEU 

The closed sets u (y*, Q (0)) which determine the values of the function U' (1/*, z*, 

6,) are, according to condition (3.7). semicontinuous above (in y*and ZE, (0)) relative 
to inclusion. 

We shall assume that the setsR through which the vector f(l) as u runs through u 
are convex [ll]. 

This requirement is again necessarily fulfilled in the case of linear system (2.1) under 
restriction (2.2). 

In fact, maximum condition (3.7) in this case can be written as 

1”’ (Y [S,, 01 13(l)) m (I* ==,,“;lCl&Z”’ (Y IO,, 01 B(l)}, u 
u\ 

(3.8) 

It does not degenerate if and only if 

II Y [8., OIW,’ I0 II > 0 
whereupon 

(3.9) 
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u* “P 
{Y [V,, O]B(‘)},‘1” 

II {Y [V*, 01 w,,‘~“II 
(3.10) 

We must now discuss the existence of a generalized solution y[t], z[t], Ott] if system 

(1.1),(1.2),(2.15).(2.16). Here again the existence of functions y[t] ,z[t], 6 [t] satis- 
fying conditions (1) - (3) (until the instant of encounter or until T = 00 if there is no 
encounter) under sufficiently general conditions (see [ll] ) (which are in any case fulfilled 
for linear system (2.1) under restrictions (2.2)) can be verified, for example, by taking 
the limit of an approximating discrete scheme similar to that described in [83. 

Without discussing the situation in the general case, and assuming that the conditions 
of existence of generalized solutions (1) - (3) are fulfilled, le us consider briefly the 
proof of the existence of the required functions u [t], z [t], 6 It] only for the case of 

linear system (2.1) under convex restriction (2.2). Here we construct a sequence (S = 

=I, 2.... ) of descrete schemes described in [8] ; the interval 6, = ~~+r - Tk of these 
schemes tends to zero as s -+ CCL We then verify that the sequence {u(S) It], Z [t], V@)[t]) 

of solutions generated by the corresponding descrete schemes contains a subsequence 

{v(i) [L], Z [t], 6”’ [t]} (i = Sir j= I,2 ,...) which converges in the appropriate fash- 
ion to the limiting element (Y It], z [t], V [I]} (to f t < 7’) which constitutes the 

required solution of system (2.1). (2.2). (2.15),(2.16). The ‘possibility of constructing 
the subsequence (Y(~) It], z It], Vi) [t]} is determined by the following facts : for 
to < t < T the set of functions u (tl restricted essentially by condition (2.2) which con- 

tains the functions u@) [II is weakly compact ; the functions y(‘) [tl are uniformly bounded 

and satisfy the Lipschitz conditions in equal degree. This means that we can choose from 
among them a subsequence which converges uniformly to the required function !I It]; 
the functions V(“) [t] -j- t are monotonically nonincreasing, so that from among them we 

can isolate subsequences which converge essentially to the appropriate function t + V [t] , 

4, !‘Ie must now verify our hypothesis whereby the extremal control ZL’(~, z, 6) ensures 
encounter of the motions y[t] and z[t] , provided that the state y[f,l, z[~,J at the initial 

instant t = t, is such that an instant of absorption to = t, -/- V” (r/It,] , z[t,l) exists. 
To prove the validity of this hypothesis concerning encounter of the motions z[t] and 

!/it] we need merely show that for any motion (y[t], z[tl, OIL]} satisfying the initial 

condition {y[t,l, zlt,], o[t,]} E w, (4.1) 

we have the inclusion 
{&I, zltl, Wl)E wo (4.2) 

for all t > t, (until encounter). 
In fact, let the initial state of system (1. l), (1.2) at the instant t = ts be defined 

by the phase vectors y = r~[t,], z = z[t,]. We set the initial value NtJ equal to 
the quantity Q”(r~[t,], z[t,]).Condition (4.1) is then fulfilled for the motion r/ill, z[tl, 

Vlt] (t > to) of system (1. I), (1.2),(2.15),(2.16). 
Under condition (4.2) we have iY’(y[t], z[t]) 6 O[t]. Thus, upon fulfillment of this 

condition we have the inequality 
t _1- lY(y[tl, zbl) < t $-WI (4.3) 

BY conditions (2.15) and (2.16) the quantity t -j- V[t] does not increase. For this 
reason (4.3) yields the inequality 

t + V”(yM, ZM) < t, + olt,] = to + @(y[&J, &Jl) (4.4) 
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which implies that for some t = t, < t, + Tl[t,l we have the limit relation 

lim sup W(y[tl, z[t]) = 0 as t + t, - 0 (4.5) 

Since the domain G(‘) [ y, 01 contracts to a point as 0 + 0 , and since the domain 

Gta’ [z, al iies inside the domain G(t) [y, Sl, for 0 = O”(y, z), limit relation (4.5) 
indicates that encounter of the motions must occur not later than at the instant 

t = t+ \( t, -+ 01 I,,]. It remains for us to verify the fulfillment of condition (4.2). 
Let us assume the contrary, i.e. that condition (4.2) is violated before encounter. 

This means that at some instant t = I* we have the inequality so (y [t*], I [1*], 

6 [P]) > 0. Since all the quantities y [r), z [f] and ,6 [r] in the domainIl%ary con- 
tinuously, and since the domain IV’ is open, there exists an instant t = t, < Pwhen the 

motion y It], z [tl and 6 It] leaves the domain W,,for the last time prior to the instant 
t = t*. Here {~[l,], z It+], 0 [t,] E W,,, since the domain 1V’i.s open, since the function 

0 [r] is continuous from the right for all t, and since for (u [fl, z if], 0 [f]) E IV’ this 
function must (by definition) be continuous from the left as well. But in this case from 
Property (3) of the function 0 If1 we infer that e”(y It+], z It+], 0 If*]) = 0. The quan- 
tity e” (y [f], z If], 0 If]) varies continuously on the segment f, < f < f+ ,since the 
quantities y If], z [t] and 6 [f]. vary continuously. Thus, the continuous function 
a” ItI = e” (Y Ii], I [fl, 6 [fl) satisfies the inequality 

e” If+] <e” If*1 (f+ > f.1 (4.6) 

On the other hand, we can verify that the right-hand upper derivative number of the 
functions e” [t] = e” (y [f], z [f], 6 If]), which we shall denote by the symbol (de[t]/&)~), 
is nonpositive for every : E (t+, f*) . Let us show this. 

We consider the hyperplane x0 tangent to the boundary of the domain G(l) [y [f], 0 [f], 

e” [f]] at the point p”. In the space @) this hyperplane is described by Eq. 

&fl +p”’ [Y [fl, 6 [fl, 1” If11 - ZO’ [f]P = 0 (4.7) 

where P [t] is the unit vector which satisfies the inequality 

a0 [f] + p(‘1 [y [f], 0 [f], 1’ [f]] - p@) [I [fL 6 [fL 1’ [fll p O (4.6) 

in accordance with (3.6). 
By virtue of the uniqueness of the point p” for any other unit vector 1, we have the 

inequality e” [fl + p(l) [Y Ifl, 6 [fl, II - P(s) Iv [fl, 6 [fl, 11 > 0 (4.9) 

Hence, for any number a > 0 there exists a number fi (a) > 0 such that the inequality 

a0 [fl + P@) IY [fl, 6 IfI, Zl - d2) [I IfI, 0 [fl, 11 > B @I (4.10) 

holds provided that 11 1 11 = 1 and 
II 1 - I” [tl !>,a (4.11) 

Since the quantities y [f], z [f] and 0 [f] vary continuously with t , the inequality 

a0 [f] + p(l) fy If + Afl, 6 [f + At], II - pt2) [Z [(t + Afl, 6 I: + Afl, 11 > 0 (4.12) 

is fulfilled on the motion {y [f], z [f], 6 [I]) at the instant f + At whatever the unit 
vector 1 (4,ll) provided that the quantity Al is sufficiently small. But in this case we 
conclude from condition (3.6) that to prove the relation 

(4.13) 

it is enough to make use of condition (2.13). where the vector 1 is restricted by the 
inequality 11 I - 1” [III1 <u (4.14) 
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Let us assume for the time being that the control u* (T) operates on the segment 
f<r<t-i- At , and that this control aims 
the motion u It] at some point Q. lying on 
the boundary of the domain G(r) (y ir), 6 [r]] 
and is closest to some point P, lying on the 

boundary of the domain &)(u It], 6 1’1; e” [t]] 
in a small q-neighborhood of the point p0 
(lim q (u) = 0 as (cf ---, 0). Specifically, if 

p.=p’, then the control U, iz) coincides with 
the control which defines the function 

u+ [V [t], z [1], 6 It])\ (see the beginning of 
Section 2 above). We denote the correspond- 

ing motion Y by the symbol II+ (7). 
Under the control u* (7) the point p* from 

/ 
II.?{ the domain G(‘)[y [t], 6 [t]; e” [t]] would 

u\tl ‘4 Fig. 3 remain in the domain G(t)[y, (t + Ai), 

0 (t + At);* e” [t]], since the point& would 

clearly remain in the domain C(r)[y, (t + Af), 6 [t + At]] (Fig. 3). With allowance for 
condition (2.8). we conclude that this implies fulfillment of the relation 

e” [t] + p(‘)[~* (t + At), 6 [t + At], 11 - pt2)Iz [t + At], 6 It + Ail, 21 20 

which implies precisely the geometric fact that the distance from the domain G (‘)IY* (1 i- 
+ At), 0 [i + At]; E’ [t]] to the hyperplane x* tangent to this domain &)(y, (t $ At?, 

Q !! + Al]; e” It]]’ at the point p* is not larger than the distance from the same hyper- 
plane to the domain Gc2J [Z [t_+ At], 6 [t + At]] (Fig. 3). In fact, however, the control 

IJ IT.1 - u” (!I ITI, s i-r], 4 [?I) operates on the segment f < T < t + At. 
Under our assumption we can verify that with the permissible variation SIL (T) = IL [%I - 

- u, (r) the controls u, (-r) on the segment t f ‘c < t + At, the domain G(‘)[y [t + At], 

0 [t + dl], ea [r]] will still contain the points p whose deviations from the points P. 
in the direction of any vector Z from the set (4.14) do not exceed the quantity 

E [a, AI] At. where k [a, At] 3 0 as {cc, At) -P 0. This implies the estimate 

e0 [tl -!- p(l) [Y [i + Ad, 6. It + AtI., 11 - ~(2) [z [t + At], 6 It + AtI, il > 

z- At E [a, AtI 

From this estimate we infer (by virtue of (2.13)) that relation (4.13) is fulfilled. 
Conditions (4.6) and (4.13) are contradictory. The resulting contradiction indicates 

that in the regular case under consideration the control u”(y,z,fi) constructed in Sec- 

tion 2 ensures encounter of the motions !/It] and z[i] not later than at the instant of 
absorption to = l0 $o” @[to], z[t,]) provided this instant exists for the initial state 

of system (1,1),(1.2). 

Note. The most interesting motions among {y [t], z [t], + [t]} are those for which 

the condition Q 111 = Q” (Y ItI, P [tl) (t >r to) (4.15) 

is always fulfilled,since this condition ensures the most favorable development of the 
process from the pursuer’s standpoint (within our formulation of the problem). The exue- 
ma1 contro1’1P (V It], z [f], 19 111) constructed in Section 2 likewise ensures encounter for 

the class of solutions {.r/ II]. z [ 11, I! [r 1) isolated by condition (4.15), but here encounter 



occurs later than at the instant 1” = T + 6’ (v ITI, z 1~1) already for t > I whatever 
the instant T realized prior to encounter. We also note that in the linear case the unique- 
ness of the point pa is immaterial. All that matters is the uniqueness of the vector 1” [ii. 
We also note that the convexity of the domains G(s) and @l does not generally play a 
decisive role either. Wowever. if these domains are nonconvex the condition of regularity 
of absorption no longer appears natural and is difficult to verify. Finally, we note that 
the above scheme of constructing the control u* can be transformed in a staightforward 

way to the problem where the condition of encounter is the inequali~ 

II {!/ IhI - 2 Imn II QY (y > 0 - const) 

The role of the quantity 6’ (y, I) in the corresponding construction for uD is played 
by the time (tfyf ( y, a) until the instant of Y-absorption. 
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